Hypothesis Testing for Proportions

Sampling Distribution & Inference on Proportions

Affordable Care Act

Americans’ Views of the Affordable Care Act

Do you generally approve or disapprove of the 2010 Affordable Care Act, signed into law by President Obama that restructured the U.S. healthcare system?

- Approve
- Disapprove
- No opinion

Statistical Significance

A private institution did a national opinion poll survey and reported that the approval rate (Affordable Care Act) is less than 50% with a p-value of 0.086.

Is the evidence statistical significant at 5% level of significance?

From a sample of 1026 subjects, there were 495 voted Approve. What is the 95% confidence interval estimate for the approval rate?

Inference on Proportion

Parameter: Population Proportion p (or π)
(Percentage of people has no health insurance)

Statistic: Sample Proportion $\hat{p} = \frac{x}{n}$

x is number of successes
n is sample size

Data: 1, 0, 1, 0, 0
$\Rightarrow \hat{p} = \frac{2}{5} = .4$

$\hat{p} = \frac{1 + 0 + 1 + 0 + 0}{5} = .4 \Rightarrow$ Sample Statistic

Sampling Distribution

Theoretical Probability Distribution of the Sample Statistic.

What is the Shape of this distribution?

What are the values of the parameters such as mean and standard deviation?

Central Limit Theorem

If a relative large random sample is taken from a population that has a mean μ and a standard deviation σ, regardless of the distribution of the population, the distribution of the sample means is approximately normal with

$\mu_{\bar{X}} = \mu$
$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$
Sampling Distribution of Sample Proportion (Central Limit Theorem)

A random sample of size \(n \) from a large Bernoulli population with proportion of successes (usually represented by a value 1) \(p \), and therefore proportion of failures (usually represented by a value 0) \(1 - p \), the sampling distribution of sample proportion, \(\hat{p} = \frac{x}{n} \), where \(x \) is the number of successes in the sample, is asymptotically normal with a mean \(p \) and standard deviation \(\sqrt{\frac{p(1-p)}{n}} \). The approximation is good when both \(n p \) and \(n (1-p) \) ≥ 10.

Probability Related to Proportion

If 30% of a population prefer policy A, what is the probability that 25 or fewer people in a random sample of size 100 taken from this population would prefer policy A?

\[
P(\hat{p} \leq 0.25) = ?
\]

\[
\hat{p} \sim N \left(\mu = 0.3, \sigma = \sqrt{\frac{0.3(1-0.3)}{100}} = 0.0458 \right) \quad [\text{CLT}]
\]

\[
P(\hat{p} \leq 0.25) = P \left(Z \leq \frac{0.25 - 0.3}{0.0458} \right) = P(Z \leq -1.09) = 0.1379
\]

Sampling Error

\[
\text{Sampling Error} = | \hat{\theta} - \theta |
\]

Key Elements of Interval Estimation

Confidence Level: A probability that the population parameter falls somewhere within the interval.

Sample statistic (point estimate) ± Margin of Error

Confidence Interval (An example of 95% CI)

\[
\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}
\]

\[
\hat{p} \pm z_{\alpha/2} \sqrt{\frac{p(1-p)}{n}}
\]

Sample Distribution

When sampling from a population that has a proportion of successes \(p \), the distribution of \(\hat{p} \) is approximately normal if \(n \) is large,

\[
\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}
\]

\[
\mu = p
\]
Confidence Interval

Confidence interval: The \((1 - \alpha)\times 100\%\) confidence interval estimate for population proportion is
\[
\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}}
\]

Large Sample Assumption:
Both \(np\) and \(n(1-p)\) are greater than 5, that is, it is expected that there at least 5 counts in each category.

Sample Size

C.I.: \(\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}}\)

Margin of Error = \(E = Z_{\alpha/2} \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}}\)

\[n = \frac{z_{\alpha/2}^2 \cdot \hat{p} \cdot (1 - \hat{p})}{E^2}\] if pilot study is done.

\[n = \frac{z_{\alpha/2}^2 \cdot 0.25}{E^2}\] to get the largest sample to achieve the goal.

Sample Size (No prior information on \(p\))

Sample Size Example: If one wishes to do a survey to estimate the population proportion with 95% confidence and a margin of error of 3%, how large a sample is needed?

\(Z_{0.025} = 1.96;\) \(E = .03\)

\(n = (1.96^2/0.03^2) \times .25 = 1067.11\)

A sample of size 1068 is needed.

Sample Size (With prior information on \(p\))

Sample Size Example: If one wishes to estimate the percentage of people infected with West Nile in a population with 95% confidence and a margin of error of 3%, how large a sample is needed? (A pilot study has been done, and the sample proportion was 6%.)

\(Z_{0.025} = 1.96;\) \(E = .03\)

\(n = (1.96^2/0.03^2) \times .06 \times (1 - .06) = 240.7\)

A sample of size 241 is needed.

An Alternative Method

By solving for \(\frac{y}{n} = \hat{p}\) in \(\frac{|y/n - p|}{\sqrt{p(1-p)/n}} \leq z_{\alpha/2}\)

The \((1 - \alpha)\times 100\%\) Confidence Interval for \(p\) is
\[
\hat{p} \pm Z_{\alpha/2} \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}} \pm \frac{\hat{p}(1 - \hat{p})}{n} + \frac{z_{\alpha/2}^2 \cdot 4n}{1 + z_{\alpha/2}^2 / n}
\]
Hypothesis Testing

1. State research hypotheses or questions. \(p = 30\% \) ?
2. Gather data or evidence (observational or experimental) to answer the question. \(\hat{p} = .25 = 25\% \)
3. Summarize data and test the hypothesis.
4. Draw a conclusion.

Statistical Hypothesis

Null hypothesis \((H_0)\):

Hypothesis of no difference or no relation, often has =, \(\geq \), or \(\leq \) notation when testing value of parameters.

Example:

\(H_0: p = 30\% \) or \(H_0: \) Percentage of votes for A is 30\%.

Alternative hypothesis \((H_1 \text{ or } H_a)\):

Usually corresponds to research hypothesis and opposite to null hypothesis, often has \(>, < \) or \(\neq \) notation in testing mean.

Example:

\(H_a: p \neq 30\% \) or \(H_a: \) Percentage of votes for A is not 30\%.

Hypotheses Statements Example

• A researcher is interested in finding out whether percentage of people in favor of policy A is different from 60\%.

\(H_0: p = 60\% \)
\(H_a: p \neq 60\% \)
[Two-tailed test]

Hypotheses Statements Example

• A researcher is interested in finding out whether percentage of people in a community that has health insurance is more than 77\%.

\(H_0: p = 77\% \) (or \(p \leq 77\% \))
\(H_a: p > 77\% \)
[Right-tailed test]

Hypotheses Statements Example

• A researcher is interested in finding out whether the percentage of bad product is less than 10\%.

\(H_0: p = 10\% \) (or \(p \geq 10\% \))
\(H_a: p < 10\% \)
[Left-tailed test]
Evidence

Test Statistic (Evidence): A sample statistic used to decide whether to reject the null hypothesis.

Logic Behind Hypothesis Testing

In testing statistical hypothesis, the null hypothesis is first assumed to be true. We collect evidence to see if the evidence is strong enough to disprove (reject) the null hypothesis and therefore support the alternative hypothesis.

One Sample Z-Test for Proportion (Large sample test)

Two-Sided Test

I. Hypothesis

One wishes to test whether the percentage of votes for A is different from 30%

\[H_0: \ p = 30\% \ \text{v.s.} \ \ H_a: \ p \neq 30\% \]

Evidence

What will be the key statistic (evidence) to use for testing the hypothesis about population proportion?

Sample Proportion: \(\hat{p} \)

A random sample of 100 subjects is chosen and the sample proportion is 25% or .25.

Sampling Distribution

When sampling from a population that has a proportion of successes \(p \), the distribution of \(\hat{p} \) is approximately normal if \(n \) is large,
Hypothesis Testing for Proportions

Sampling Distribution

If \(H_0: p = 30\% \) is true, sampling distribution of sample proportion will be approximately normally distributed with mean .3 and standard deviation (or standard error) \(\sigma_p = 0.0458 \).

\[\hat{p} \pm 1.09 \sigma_p \]

This implies that the statistic is 1.09 standard deviations away from the mean .3 under \(H_0 \), and is to the left of .3 (or less than .3).

Level of Significance

Level of significance for the test (\(\alpha \))

A probability level selected by the researcher at the beginning of the analysis that defines unlikely values of sample statistic if null hypothesis is true.

\[\text{c.v.} = \text{critical value} \]

Rejection region \(\alpha/2 = 0.025 \)

Two-sided Test

Rejection region \(\alpha/2 = 0.025 \)

Critical values

\(z \approx -1.96 \) or \(z \approx 1.96 \)

\(\text{p-value approach:} \) Compare the probability of the evidence or more extreme evidence to occur when null hypothesis is true. If this probability is less than the level of significance of the test, \(\alpha \), then we reject the null hypothesis. (Reject \(H_0 \) if \(p \)-value < \(\alpha \))

\[\text{p-value} = P(Z \leq -1.09 \text{ or } Z \geq 1.09) = 2 \times P(Z \leq -1.09) = 2 \times 0.1379 = 0.2758 \]

The smaller the p-value, the stronger the evidence for supporting \(H_a \) and rejecting \(H_0 \).
IV. Draw conclusion

Since from either
critical value approach \(z = -1.09 > -z_{a/2} = -1.96 \)
or \(p\)-value approach \(p\)-value = .2758 > \(\alpha = .05 \),
we do not reject null hypothesis.

Therefore we conclude that there is no sufficient evidence to support the alternative hypothesis that the percentage of votes would be different from 30%.

Steps in Hypothesis Testing

1. State hypotheses: \(H_0 \) and \(H_a \).
2. Choose a proper test statistic, collect data, checking the assumption and compute the value of the statistic.
3. Make decision rule based on level of significance(\(\alpha \)).
4. Draw conclusion.
 (Reject or not reject null hypothesis)
 (Support or not support alternative hypothesis)

When do we use this \(z \)-test for testing the proportion of a population?

- Large random sample.

One-Sided Test

Example with the same data:
A random sample of 100 subjects is chosen and the sample proportion is 25%.

I. Hypothesis

One wishes to test whether the percentage of votes for A is less than 30%

\(H_0: p = 30\% \) v.s. \(H_a: p < 30\% \)

II. Test Statistic

\[
z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}} \]

\[
= \frac{.25 - .3}{\sqrt{\frac{.3(1-.3)}{100}}} = -1.09
\]

This implies that the statistic is 1.09 standard deviations away from the mean .3 under \(H_0 \), and is to the left of .3 (or less than .3)
III. Decision Rule

Critical value approach: Compare the test statistic with the critical values defined by significance level \(\alpha \), usually \(\alpha = 0.05 \). We reject the null hypothesis, if the test statistic \(z < -z_{\alpha} = -z_{0.05} = -1.645 \).

p-value approach: Compare the probability of the evidence or more extreme evidence to occur when null hypothesis is true. If this probability is less than the level of significance of the test, \(\alpha \), then we reject the null hypothesis.

\[
p-value = P(Z \leq -1.09) = P(Z \leq -1.09) = 0.1379
\]

IV. Draw conclusion

Since from either critical value approach \(z = -1.09 > -1.645 \) or p-value approach \(p-value = 0.1379 > 0.05 \), we do not reject null hypothesis.

Therefore we conclude that there is no sufficient evidence to support the alternative hypothesis that the percentage of votes is less than 30%.

Errors in Hypothesis Testing

Possible statistical errors:

- **Type I error:** The null hypothesis is true, but we reject it.
- **Type II error:** The null hypothesis is false, but we don’t reject it.

“\(\alpha \)” is the probability of committing Type I Error.

Can we see data and then make hypothesis?

1. Choose a test statistic, collect data, checking the assumptions, and compute the value of the statistic.
2. State hypotheses: \(H_0 \) and \(H_A \).
3. Make decision rule based on level of significance (\(\alpha \)).
4. Draw conclusion. (Reject null hypothesis or not)

\(\star \) One-Sample \(z \)-test for a population proportion

\(z \)-test:

Step 1: State Hypotheses (choose one of the three hypotheses below)

i) \(H_0 : p = p_0 \) v.s. \(H_A : p \neq p_0 \) (Two-sided test)

ii) \(H_0 : p = p_0 \) v.s. \(H_A : p > p_0 \) (Right-sided test)

iii) \(H_0 : p = p_0 \) v.s. \(H_A : p < p_0 \) (Left-sided test)
Hypothesis Testing for Proportions

Test Statistic

Step 2: Compute z test statistic:

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$$

Step 3: Decision Rule:

- **p-value approach:** Compute p-value,
 - if $H_A: p \neq p_0$, p-value = $2 \cdot P(Z \geq |z|)$
 - if $H_A: p > p_0$, p-value = $P(Z \geq z)$
 - if $H_A: p < p_0$, p-value = $P(Z \leq z)$
- reject H_0 if p-value < α

- **Critical value approach:** Determine critical value(s) using α,
 - reject H_0 against
 - i) $H_A: p \neq p_0$, if $|z| > z_{\alpha/2}$
 - ii) $H_A: p > p_0$, if $z > z_\alpha$
 - iii) $H_A: p < p_0$, if $z < -z_\alpha$

Step 4: Draw Conclusion.

Example: A researcher hypothesized that the percentage of the people living in a community who has no insurance coverage during the past 12 months is **not** 10%. In his study, 1000 individuals from the community were randomly surveyed and checked whether they were covered by any health insurance during the 12 months. Among them, 122 answered that they did not have any health insurance coverage during the last 12 months. Test the researcher’s hypothesis at the level of significance of 0.05.

Hypothesis: H_0: $p = .10$ v.s. H_A: $p \neq .10$ (Two-sided test)

Test Statistic:

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}} = \frac{.122 - .10}{\sqrt{\frac{.10(1-.10)}{1000}}} = 2.32$$

p-value = $2 \times .0102 = .0204$

Decision Rule: Reject null hypothesis if p-value < .05.

Conclusion: p-value = .0204 < .05. There is sufficient evidence to support the alternative hypothesis that the percentage is statistically significantly different from 10%.

Z-Test v.s. Binomial Test

Z-Test Statistic:

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}} = \frac{.122 - .10}{\sqrt{\frac{.10(1-.10)}{1000}}} = 2.32$$

$P(Z > 2.32) = 0.0102$, p-value = $2 \times .0102 = .0204$

Binomial Test: test statistic = 122

(Exact Test, $p = .1$ from null hypothesis.)

$$P(X_0 \geq 122 \mid p = .1) = .0134, \text{ } p$-value = 2 \times .0134 = .0268$$

$P(Z > 2.32)$ is approximated by $P(X_0 \geq 122 \mid p = .1)$

Two Independent Samples z-test for Two Proportions

Purpose: Compare proportions of two populations

Assumption: Two independent large random samples.

Step 1: Hypothesis:

1) H_0: $p_1 = p_2$ v.s. H_A: $p_1 \neq p_2$
2) H_0: $p_1 = p_2$ v.s. H_A: $p_1 > p_2$
3) H_0: $p_1 = p_2$ v.s. H_A: $p_1 < p_2$
Hypothesis Testing for Proportions

If a random sample of size \(n_1\) from population 1 has \(x_1\) successes, and a random sample of size \(n_2\) from population 2 has \(x_2\) successes, the sample proportions of these two samples are

\[
p_1 = \frac{x_1}{n_1} \quad \text{(proportion of successes in sample 1)}
\]

\[
p_2 = \frac{x_2}{n_2} \quad \text{(proportion of successes in sample 2)}
\]

\[
p = \frac{x_1 + x_2}{n_1 + n_2} \quad \text{(overall sample proportion of successes)}
\]

Step 2:
Test Statistic:

\[
z = \frac{\hat{p}_1 - \hat{p}_2 - (p_1 - p_2)}{\sqrt{\hat{p}(1 - \hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}
\]

(If \(H_0: p_1 = p_2\), then \(p_1 - p_2 = 0\))

\(z\) has a standard normal distribution if \(n_1\) and \(n_2\) are large.

Step 3:
Decision Rule:

- **p-value approach:** Compute p-value.
 - if \(H_0: p_1 = p_2\), then \(p\text{-value} = 2 \cdot P(Z \geq |z|)\)
 - if \(H_0: p_1 > p_2\), then \(p\text{-value} = P(Z \geq z)\)
 - if \(H_0: p_1 < p_2\), then \(p\text{-value} = P(Z \leq z)\)
 - reject \(H_0\) if \(p\text{-value} < \alpha\)

- **Critical value approach:** Determine critical value(s) using \(\alpha\), reject \(H_0\) against
 1. \(H_0: p_1 = p_2\) if \(|z| > z_{\alpha/2}\)
 2. \(H_0: p_1 > p_2\) if \(z > z_{\alpha}\)
 3. \(H_0: p_1 < p_2\) if \(z < -z_{\alpha}\)

Step 4:
Conclusion:

Since \(p\text{-value} = 0.0114 < 0.05\), the null hypothesis would be rejected if \(p\text{-value}\) is less than 0.05.

Example: Test to see if the percentage of smokers in country A is significantly different from country B, at 5% level of significance?

For country A, 1500 adults were randomly selected and 551 of them were smokers.

For country B, 2000 adults were randomly selected and 652 of them were smokers.

\[
\hat{p}_1 = \frac{551}{1500} = 0.367 \quad \text{(Country A)}
\]

\[
\hat{p}_2 = \frac{652}{2000} = 0.326 \quad \text{(Country B)}
\]

\[
\hat{p} = \frac{(551 + 652)}{(1500 + 2000)} = 0.344
\]

(overall percentage of smokers)

Step 3:

Decision Rule: Using the level of significance at 0.05, the null hypothesis would be rejected if \(p\text{-value}\) is less than 0.05.

Step 4:

Conclusion:

Since \(p\text{-value} = 0.0114 < 0.05\), the null hypothesis is rejected. There is sufficient evidence to support the alternative hypothesis that there is a statistically significant difference in the percentages of smokers in country A and country B.

Confidence interval: The \((1 - \alpha)\%\) confidence interval estimate for the difference of two population proportions is

\[
\hat{p}_1 - \hat{p}_2 \pm z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}
\]

The 95% confidence interval estimate for the difference of the two population proportions is:

\[
0.367 - 0.326 \pm 1.96 \sqrt{\frac{0.367(1 - 0.367)}{1500} + \frac{0.326(1 - 0.326)}{2000}}
\]

\[
0.041 \pm 0.032 = 4.1\% \pm 3.2\% \implies \text{CI does not cover 0}
\]

(0.9%, 7.3%) implies significant difference.
Hypothesis Testing for Proportions

Confidence Interval Estimate of One Proportion

\[
\hat{p}_1 = \frac{551}{1500} = 0.367 = 36.7\% \quad \text{(from A)}
\]
\[
\hat{p}_2 = \frac{652}{2000} = 0.326 = 32.6\% \quad \text{(from B)}
\]
For A: 36.7% ± 2% or (34.7%, 38.9%)
For B: 32.6% ± 1.7% or (30.9%, 34.3%)

Two CI’s do not overlap implies significant difference.

Methods of Testing Hypotheses

- Traditional Critical Value Method
- P-value Method
- Confidence Interval Method