Continuous Distributions

1 Random Variables of the Continuous Type

Density Curve

A smooth curve that fits the distribution

Probability density is not probability!

Probability density function, \(f(x) \)

Use a mathematical model to describe the variable.

Continuous Distribution

Probability Density Function (p.d.f) of a random variable \(X \) of continuous type with a space \(S \) is an integrable function, \(f(x) \), that satisfies the following conditions:

1. \(f(x) \geq 0, x \in S \),
2. \(\int_S f(x) \, dx = 1 \) (Total area under curve is 1.)
3. For \(a \) and \(b \) in \(S \), \(P(a < X < b) = \int_a^b f(x) \, dx \)

Meaning of Area Under Curve

Example: What percentage of the distribution is in between 72 and 86?

\(P(X = 72) = 0 \), density is not probability.

\(P(72 \leq X \leq 86) = P(72 < X < 86) = P(72 \leq X < 86) = P(72 < X \leq 86) \)
Continuous Distributions

Example:
If the density function of a continuous distribution is
\[f(x) = \begin{cases} 8x, & \text{for } 0 < x < 0.5 \\ 0, & \text{elsewhere} \end{cases} \]
Find the proportion of values in this distribution that is less than 1/4.
The area under the \(f(x) \) between 0 and 1/4 is
\[\int_0^{1/4} 8x \, dx = 8 \left[\frac{x^2}{2} \right]_0^{1/4} = 4 \left(\frac{1}{4} \right)^2 - 4(0)^2 = 4/16 = 1/4. \]

Example:
If the density function of a continuous distribution \(X \), waiting time between arrivals of cars at a intersection, is
\[f(x) = \frac{1}{5} e^{-\frac{x}{5}}, \quad \text{for } x > 0 \]
Find the probability that the waiting time (in seconds) till the next arrival of car at this intersection is more than 3 seconds.
The area under the \(f(x) \) and \(x > 3 \) is
\[\int_3^{\infty} \frac{1}{5} e^{-\frac{x}{5}} \, dx = \lim_{b \to \infty} \left[-e^{-\frac{x}{5}} \right]_3^b = \lim_{b \to \infty} (-e^{-\frac{b}{5}}) - (-e^{-\frac{3}{5}}) = 0 - (-0.5488) = 0.5488 \]

Cumulative Distribution Function
The cumulative distribution function (c.d.f. or distribution function, d.f.) of a continuous random variable is defined as
\[F(x) = P(X \leq x) = \int_{-\infty}^{x} f(t) \, dt \]
- \(F(-\infty) = 0, \quad F(\infty) = 1 \)
- \(P(a < X < b) = F(b) - F(a) \)
- \(F(x) = f(x) \) if derivative exists

Review of Calculus
\[\int x^n \, dx = \frac{1}{n+1} x^{n+1} + c \]
\[\int e^{ax} \, dx = \frac{1}{a} e^{ax} + c \]

Example:
If the density function of a continuous distribution \(X \), waiting time between arrivals of cars at a intersection, is
\[f(x) = \frac{1}{5} e^{-\frac{x}{5}}, \quad \text{for } x > 0 \]
Find the probability that the waiting time (in seconds) till the next arrival of car at this intersection is less than 3 seconds.
The area under the \(f(x) \) below 3 is
\[\int_0^{3} \frac{1}{5} e^{-\frac{x}{5}} \, dx = \left[-e^{-\frac{x}{5}} \right]_0^3 = (-e^{-\frac{3}{5}}) - (-e^{0}) = e^{-\frac{3}{5}} - 1 - 0.5488 = 0.4522 \]

Example:
If the p.d.f. of a continuous distribution \(X \), waiting time between arrivals of cars at a intersection, is, where \(\theta \) is a constant parameter of this distribution.
\[f(x) = \frac{1}{\theta} e^{-\frac{x}{\theta}}, \quad \text{for } x > 0 \]
Find the distribution function.
\[F(x) = \int_{-\infty}^{x} f(t) \, dt = \int_0^{x} \frac{1}{\theta} e^{-\frac{t}{\theta}} \, dt = \left[-e^{-\frac{t}{\theta}} \right]_0^x = 1 - e^{-\frac{x}{\theta}} \]
\[F(x) = \begin{cases} 0, & -\infty < x < 0 \\ 1 - e^{-\frac{x}{\theta}}, & 0 < x < \infty \end{cases} \]
Continuous Distributions

Measure of Center for a Continuous Distribution

The mean value (expected value) of a continuous random variable (distribution) X, denoted by μ_X or just μ (or $E[X]$) is defined as

$$
\mu_X = \int_{-\infty}^{\infty} x \cdot f(x) \, dx
$$

Measure of Spread for a Continuous Distribution

The variance of a continuous random variable (distribution) X, denoted by σ_X^2 or just σ^2 (or $Var[X]$) is defined as

$$
\sigma^2 = E[(X - \mu)^2] = \int_{-\infty}^{\infty} (x - \mu)^2 \cdot f(x) \, dx
$$

The standard deviation of X is

$$
\sigma = \sqrt{\sigma^2} = \sqrt{E[(X - \mu)^2]}
$$

Moment Generating Function for a Continuous Distribution

The moment generating function, if exists, of a continuous random variable (distribution) X, denoted by $M(t)$ is defined as

$$
M(t) = E[e^{tX}] = \int_{-\infty}^{\infty} e^{tx} f(x) \, dx,
\quad -h < t < h
$$

Example:

If the density function of a continuous distribution is

$$
f(x) = \begin{cases}
8x & \text{for } 0 < x < 0.5 \\
0 & \text{elsewhere}
\end{cases}
$$

Find the mean and variance of this distribution

The mean is

$$
\mu = E(X) = \int_{-\infty}^{\infty} x \cdot f(x) \, dx = \int_{0}^{0.5} x \cdot f(x) \, dx
$$

$$
= \int_{0}^{0.5} x \cdot 8x \, dx = 8 \int_{0}^{0.5} x^2 \, dx = \frac{8}{3} \left(\frac{0.125 - 0}{3} \right) + \frac{1}{3}
$$

The Percentile

The $(100p)$th percentile (quantile of order p) is the number π_p, such that the area under $f(x)$ to the left of π_p is p.

$$
p = \int_{-\infty}^{\pi_p} f(x) \, dx = F(\pi_p)
$$

Median is the 50th percentile.
Continuous Distributions

Median of a distribution

Example:
If the density function of a continuous distribution is

\[f(x) = \begin{cases}
8x, & \text{for } 0 < x < 0.5 \\
0, & \text{elsewhere}
\end{cases} \]

Find the median of this distribution.

Median is \(c \) such that

\[\int_0^c 8x \, dx = 0.5 \]

What is \(c \)?

\[\int_0^c 8x \, dx = \frac{8x^2}{2} \bigg|_0^c = 0.5 \]

\[\Rightarrow 4c^2 - 0 = 0.5 \]

\[\Rightarrow c^2 = \frac{0.5}{4} \]

\[\Rightarrow c = \sqrt{\frac{0.5}{4}} = 0.354 \]

Percentile

Example:
If the density function of a continuous distribution is

\[f(x) = \begin{cases}
8x, & \text{for } 0 < x < 0.5 \\
0, & \text{elsewhere}
\end{cases} \]

Find the 25th percentile of this distribution.

25th percentile is \(c \) such that

\[\int_0^c 8x \, dx = 0.25 \]

What is \(c \)?

\[\int_0^c 8x \, dx = \frac{8x^2}{2} \bigg|_0^c = 0.25 \]

\[\Rightarrow 4c^2 - 0 = 0.25 \]

\[\Rightarrow c^2 = \frac{0.25}{4} \]

\[\Rightarrow c = \sqrt{\frac{0.25}{4}} = 0.25 \]

Sample Quantile

Let \(y_1 \leq y_2 \leq \ldots \leq y_n \) be the order statistics associated with the sample \(x_1, x_2, \ldots, x_n \), then \(y_r \) is called the sample quantile of order \(r/n + 1 \) as well as \(\frac{100}{n + 1} \) percentile.

Example: 1, 3, 7, 8, 9, 13

\(n = 6 \), and the value \(8, y_4 \),

is the \((4/(6+1))\)th quantile of the distribution of the sample, i.e. 0.571 sample quantile or 57.1 percentile.

Examine Distribution with Quantile-Quantile Plot

Make a plot using data in previous slide.
Continuous Distributions

2 The Uniform and Exponential Distributions

Uniform Distribution
The continuous random variable X has a **uniform distribution** if its p.d.f. is equal to a constant on its support. If the support is the interval $[a, b]$, then its p.d.f. is

$$f(x) = \frac{1}{b-a}, \quad a \leq x \leq b.$$

It is usually denoted as $U(a, b)$.

$$f(x) = \begin{cases} \frac{1}{b-a}, & a \leq x \leq b \\ 0, & \text{elsewhere} \end{cases}$$

Pseudo-Random Number Generator on most computers $U(0, 1)$

Exponential Distribution
The continuous random variable X has an **exponential distribution** if its p.d.f. is

$$f(x) = \begin{cases} \frac{1}{\theta} e^{-x/\theta}, & 0 < x \\ 0, & \text{elsewhere} \end{cases}$$

where θ is the mean of the distribution.

* X can be the waiting time until next success in a Poisson process.
Continuous Distributions

Exponential Distribution

Example: Let X have an exponential distribution with a mean of 30, what is the first quartile of this distribution?

$$F(x) = \begin{cases} 0, & -\infty < x < 0 \\ 1 - e^{-x/30}, & 0 \leq x < \infty \end{cases}$$

$$F(2.5) = 1 - e^{-2.5/30} \Rightarrow -2.5/30 = 0.75 \Rightarrow -\frac{\ln(0.75)}{\theta} = 8.63$$

$\theta = 30 \Rightarrow P(0.25) = 1 - e^{-0.25/8.63} = 0.918$

Exponential Distribution

Let W be the waiting time until next success in a Poisson process in which the average number of success in unit interval is λ, then, for $w \geq 0$

$$F(w) = 1 - e^{-w/\theta} \Rightarrow \text{d.f. of exponential distribution.}$$

$$f(w) = \frac{1}{\theta} e^{-w/\theta} \Rightarrow \text{p.d.f. of exponential distribution.}$$

Exponential Distribution

Suppose that number of arrivals of customers follows a Poisson process with a mean of 10 per hour. What is the probability that the next customer will arrive within 15 minutes? (15 min. = 0.25 hour)

$$P(0.25) = 1 - e^{-0.25/0.1} = 0.918$$

Exponential Distribution

Let W be the waiting time until next success in a Poisson process in which the average number of success in unit interval is λ, then, for $w \geq 0$

$$F(w) = 1 - e^{-w/\theta} \Rightarrow P(0.25) = 1 - e^{-0.25/0.1} \Rightarrow \text{p.d.f. of exponential distribution.}$$

Gamma Distribution

The continuous random variable X has a Gamma distribution, $\Gamma(\alpha, \theta)$, if its p.d.f. is

$$f(x) = \begin{cases} \frac{1}{\Gamma(\alpha)\theta^\alpha} x^{\alpha-1} e^{-x/\theta}, & \text{for } 0 \leq x \\ 0, & \text{elsewhere.} \end{cases}$$

Gamma Function: $\Gamma(n) = (n-1)!$

* X can be the waiting time until α-th success in a Poisson process.
Continuous Distributions

Gamma Distribution

The mean, variance, and m.g.f. of a continuous random variable X that has an *Gamma distribution* are:

$$
\mu = \alpha \theta, \quad \sigma^2 = \alpha \theta^2, \\
M(t) = \frac{1}{(1 - \theta t)^\alpha}, \quad t < \frac{1}{\theta}
$$

- Gamma(1, θ) \Rightarrow Exponential Distribution
- Gamma(2, $r/2$) \Rightarrow Ch-square with d.f. = r.

Special Notation $\chi^2_{\alpha}(r)$

Let X be a random that has Chi-square distribution with degrees of freedom r.

$$
P[X \geq \chi^2_{\alpha}(r)] = \alpha
$$

Example: Find $\chi^2_{0.05}(3) = 7.815$

Try This!

- Find $\chi^2_{0.1}(7) = ?$
- Find $\chi^2_{0.025}(4) = ?$
- Find the 10th percentile from a χ^2 distribution with degrees of freedom 6.
Continuous Distributions

A Good Generator

\[X_i = (397,204,094 X_{i-1}) \mod (2^{31} - 1) \]

• Simple
• Widespread use
• Long cycle length \(2^{31} - 2\) (all numbers besides 1 and \(2^{31} - 1\) can be generated.)
• \(U_i = X_i / (2^{31} - 1),\ U_i \sim U(0,1)\)

Methods for Generating Non-Uniform RN’s

• CDF Inversion
• Transformations
• Accept/Reject Methods
• ...

CDF Inversion

Theorem: Let \(U \) have a distribution that is \(U(0,1) \). Let \(F(x) \) have the properties of a distribution function of the continuous type with \(F(a) = 0 \) and \(F(b) = 1 \), and suppose that \(F(x) \) is strictly increasing on the support \(a < x < b \), where \(a \) and \(b \) could be \(-\infty\) and \(\infty \), respectively. Then the random variable \(X \) defined by \(X = F^{-1}(U) \) is a continuous random variable with distribution function \(F(x) \).

Proof:

Let \(X = F^{-1}(U) \), the distribution function of \(X \) is \(P(X \leq x) = P[U \leq F(x)] \), \(a < x < b \).

Since \(F(x) \) is strictly increasing, \(\{F^{-1}(U) \leq x\} \) is equivalent to \(\{U \leq F(x)\} \) and hence

\[P(X \leq x) = P[U \leq F(x)], \quad a < x < b. \]

But \(U \) is \(U(0,1) \); so \(P(U \leq u) = u \) for \(0 < u < 1 \), and accordingly,

\[P(X \leq x) = P[U \leq F(x)] = F(x), \quad 0 \leq F(x) < 1. \]

That is the distribution function of \(X \) is \(F(x) \).

Generate random numbers from Exponential distribution, \(\theta = 10 \)

• \(f(x) = 1 - e^{-x/10} \) and \(x = F^{-1}(y) = -10 \cdot \ln(1 - y) \)
• Use uniform \(U(0,1) \) random number generator to generate random numbers \(y_1, y_2, ..., y_n \).
• The exponentially distributed random numbers \(x_i \)'s would be \(x_i = -10 \cdot \ln(1 - y_i), \quad i = 1, ..., n \).
• Therefore, if the uniform random number generator generates a number \(0.1514 \), then \(1.6417 = -10 \cdot \ln(1 - 0.1514) \) would be a random observation from exponential distribution with \(\theta = 10 \).

Try this!!!

An \(U(0,1) \) random number generator has generated a value of 0.26.

1. Use the CDF Inversion method to convert this \(U(0,1) \) random number to simulate an observation from an exponential distribution with \(\theta = 12 \).

\[x_i = F^{-1}(y_i) = -12 \cdot \ln(1 - y_i) \]

2. Use CDF Inversion method to generate a random number from the continuous random variable that has the following p.d.f.

\[f(x) = \begin{cases} 8x & , \text{ for } 0 < x < 0.5 \\ 0 & , \text{ elsewhere} \end{cases} \]