N. T			
Name			
value			

1. The pulse rates (per minute) for 6 patients visited a doctor this morning were recorded as the following: 67 77 88 75 72 76. Find the sample mean and the sample standard deviation of this sample of pulse rates.

Sample Mean = 75.83 Sample Standard Deviation = 6.97 3= 48.57

2. Answer parts 1) to 8) using the following pulse rates data.

65 72 78 80 71 76 60 82 91 69 90 112 71 72 71

- 1) 70^{th} percentile of the data above: 80^{th} 10^{th} percentile of a value 76 in the data above is: 10^{th} 10^{th} 10^{th} 10^{th} 10^{th} percentile of a value 76 in the data above is: 10^{th} 10^{th}
- 3) Minimum = $Q_1 = 7$ Median = $Q_3 = 2$ Maximum = 1/2
- 4) Inter-quartile Range = 8>-71 / 11
- 5) The distribution of this data is (describe the skewness)
- Make a Stemplot.
- 7) Make a frequency histogram using the classes starting from class "0 < 10", or "say 0 to less than 10".
- 8) Make a Boxplot and identify outliers if they exist and also indicate them in the boxplot using fences.
- 3. Suppose that the pulse rates (per minute) of healthy male adults from a large population is normally distributed with mean $\mu = 69$ and standard deviation $\sigma = 3$.
 - a) What does the Empirical Rule say about the percentage of this distribution within 63 to 75?
 - b) What does the Chebychev's Rule say about the percentage of this distribution within 63 at least 75? of least $1-\frac{1}{k^2}$ in $k \leq D$. $\frac{1}{2} = 1-\frac{1}{4} = \frac{3}{4} = .75$ to 75?
 - c) If a person's pulse rate is 72, what would be the z-score of his/her pulse rate?